

UNIFIED INTERNATIONAL CYBER OLYMPIAD

CLASS - 10

Question Paper Code: 3B117

KEY

1. C	2. D	3. C	4. C	5. A	6. B	7. B	8. C	9. C	10. D
11. D	12. C	13. C	14. B	15. D	16. C	17. A	18. D	19. A	20. C
21. C	22. D	23. D	24. B	25. D	26. B	27. D	28. C	29. B	30. C
31. A	32. A	33. C	34. A	35. D	36. B	37. D	38. D	39. B	40. C
41. C	42. B	43. B	44. C	45. B	46. C	47. C	48. B	49. C	50. D

SOLUTIONS

MENTAL ABILITY

- 01. (C) Given $p^2 = 4q \Rightarrow$ Roots are real equal Given '2' is a root
 - \therefore '2' is also other of p(x)
- 02. (D) We get only once chance of 52 mondays and 53 sundays in a leap year among '7' changes

∴ required probability =
$$\frac{1}{7}$$

03. (C) Given
$$S_{11} = \frac{11}{2}[2a+10d]$$

$$=\frac{11}{2} \times 2 (a+5d)$$

$$\therefore$$
 a + 5d = $\frac{253}{11}$ = 23

∴
$$a_6 = 23$$
.

04. (C) Let
$$\frac{1}{x+y} = a$$
 and $\frac{1}{x-y} = b$

$$\therefore$$
 25a – 3b = 1 (1)

website: www.unifiedcouncil.com

eq
$$(1) \times 2 = 50a - 6b = 2$$

eq
$$(2) \times 3 = 120a + 6b = 15$$

$$a = \frac{1}{10}$$
 and $b = \frac{1}{2}$

$$x + y = 10 \text{ and } x - y = 2$$

$$\therefore x = 6$$
 and $y = 4$

05. (A) Let ABC be the triangular field such that AB = 20 m, AC = 34 and BC = 42 m.

Let
$$\angle A = \theta_1$$
, $\angle B = \theta_2$ and $\angle C = \theta_3$,

Then, Area that can be grazed by the three horses

- = (Area of sector with central angle θ_1 and radius r = 7 m)
- + (Area of sector with central angle θ_2 and radius r = 7 m)
- + (Area of sector with central angle θ_3 and radius r = 7 m)

$$=\frac{\pi r^2 \theta_1}{360} + \frac{\pi r^2 \theta_2}{360} + \frac{\pi r^2 \theta_3}{360} = \frac{\pi r^2}{360}$$

$$(\theta_1 + \theta_2 + \theta_3)$$

$$= \left(\frac{22}{7} \times \frac{7 \times 7}{360} \times 180\right) \,\mathrm{m}^2$$

[Since $\theta_1 + \theta_2 + \theta_3 = 180$ and r = 7 m] = 77 m².

Now, Area of the complete triangular plot ABC

$$=\sqrt{s(s-a)(s-b)(s-c)}$$

[where s =
$$\frac{1}{2}$$
 (AB + BC + CA) = 48 m, a =

BC = 42 m, b = AC = 34 m, c = AB = 20 m and so, (s-a) = 6 m, (s-b) = 14 m, (s-c) = 28 m

$$= \left(\sqrt{48 \times 6 \times 14 \times 28}\right) \text{ m}^2 - 336 \text{ m}^2$$

 \therefore Area of the plot which remains ungrazed = (336 – 77) m² = 259 m².

06. (B) Given x, a_1 , a_2 , y are in AP &

$$x$$
, b_1 , b_2 , y are in AP

$$\therefore a_1 = b_1 \& a_2 = b_2$$

$$\therefore \frac{a_2 - a_1}{b_2 - b_1} = \frac{b_2 - b_1}{b_2 - b_1} = 1$$

07. (B)
$$s = \frac{a+b+c}{2} = \frac{61cm+102cm+109cm}{2}$$

$$=\frac{272^{136}}{2_1}$$
cm

Area of
$$\triangle ABC = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{136 \times 75 \times 34 \times 27} cm^2$$

$$=\sqrt{34\times4\times25\times3\times34\times9\times3}$$
 cm²

$$= 34 \times 2 \times 5 \times 3 \times 3 \text{ cm}^2$$

$$= 3060 \text{ cm}^2$$

08. (C) Given
$$\alpha + \beta = -2$$
 & $\alpha\beta = C$

But
$$(\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta)$$

$$(-2)^3 = 4 + 3c (-2)$$

$$-8 = 4 - 6c$$

$$-12 = -6c$$
 : $c = 2$

09. (C)
$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{-11}{3}$$

10. (D) Given
$$l + b + h = 19$$
 cm and

$$\sqrt{l^2 + b^2 + h^2} = 5\sqrt{5} \text{ cm}$$

$$(l + b + h)^2 = 19^2$$

$$l^2 + b^2 + h^2 + 2(lb + bh + hl) = 361$$

$$125 + 2(lb + bh + hl) = 361$$

$$2(lb + bh + hl) = 361 - 125 = 236 \text{ cm}^2$$

$$\therefore$$
 TSA = 236 cm²

11. (D) Let the height be x cm

$$\therefore \quad \text{Radius } = 1\frac{2}{3}\text{h} = \frac{5}{3}x\text{cm}$$

$$CSA = 2\pi rh = 2 \times \frac{22}{7} \times \frac{5}{3} x \times x \text{ cm}^2$$

$$=\frac{\frac{9240^{4620} \text{ paise}}{\left(\frac{2\text{paise}}{\text{cm}^2}\right)}$$

$$x^2 = {}_{21}\frac{462}{9}\% \times \frac{7}{22} \times \frac{3}{10}\%$$

$$x^2 = (21)^2$$

Height (x) = 21 cm

Radius =
$$\frac{5x}{3} = \frac{5 \times 21 \text{ cm}}{3} = 35 \text{cm}$$

Volume of cylinder

$$= \pi r^2 h = \frac{22}{7_1} \times \frac{35}{5} \times 35 \times 21 \text{ cm}^3$$

= 80850 cm³

12. (C)
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{18 \pm \sqrt{324 - 4}}{2 \times 1}$$

$$=\frac{18\pm\sqrt{320}}{2}$$

$$=\frac{18\pm8\sqrt{5}}{2}$$

$$x = 9 \pm 4\sqrt{5}$$

13. (C) Base area = $\frac{1}{2} \times h (a + b)$

$$=\frac{1}{2}\times32$$
 m (4.5 + 2.5) m = 112 mts²

Volume of the pool = Base area × breadth

 $= 112 \text{ mts}^2 \times 9.5 \text{ mts} = 1064 \text{ mts}^3$

14. (B)
$$\frac{2}{a+b+1} = \frac{3}{a+2b+2} = \frac{7}{4a+4b+1}$$

$$\frac{2}{a+b+1} = \frac{3}{a+2b+2}$$

$$\Rightarrow$$
 2a + 4b + 4 = 3a + 3b + 3

$$a - b = 1$$
(1)

$$\frac{3}{a+2b+2} = \frac{7}{4a+4b+1}$$

$$5a - 2b = 11 \rightarrow (2)$$

$$2a - 2b = 2 \rightarrow (1) \times 2$$

Solving eq (1) & (2) we get : 3a = 9

$$b = 2$$

15. (D) Let number of green marbles be 'x'

Given
$$\frac{x}{15+27+x} = \frac{1}{7}$$

$$7x = x + 42$$

$$6x = 42$$

$$\therefore$$
 No. of green marbles $(x) = \frac{42}{6} = 7$

$$\therefore$$
 Total marble s = 15 + 27 + 7 = 49

Given 5 green marbles are taken from bag

$$\therefore$$
 Total marbles = 49 – 5 = 44 and

Total green marbles =
$$7 - 5 = 2$$

.. Probability of drawing a green marble

$$=\frac{2}{44}=\frac{1}{22}$$

REASONING

16. (C) Each diagonal line of numbers, starting with the top left hand corner number, increases by 1 each time, ie:

4

$$2 + 3 = 5$$

$$2 + 1 + 3 = 6$$

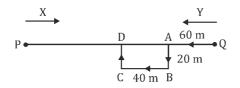
$$2 + 1 + 2 + 2 = 7$$

$$4 + 1 + 3 = 8$$

$$5 + 4 = 9$$

10

17. (A) La<u>te ar</u>e


Tear is formed from option (A)

- 19. (A) 1 cube
- 20. (C) HLE Þ ATHLETES

21. (C)

Clearly Y moves 60 m from Q upto A, then 20 m upto B, 40 m upto C and then upto D.

So,
$$AD - BC = 40 \text{ m}$$
.

$$QD = (60 + 40) m = 100 m.$$

Since A and B travel with the name speed, A will travel the same speed along the horizontal as B travels in the same time. i.e., (60 + 20 + 40 + 20) = 140 m.

So, X travels 140 m upto A.

Distance between X and Y = AD - (100 - 60) m = 40 m.

22. (D) Option (A): ASSEMBLE, BEAMLESS

Option (B): MINGER

Option (C): ABOARD, ABROAD

Option (D): No word formed with USAGRDNN

23. (D) M, The second, fifth, tenth and twelfth letters of the word METROPOLITAN are E, O, T and N respectively. The words formed are NOTE and TONE.

BK50RP62

- 24. (B) BK50RP62
- 25. (D) Suppose I have t daughters. Then I have 2t sons. Each daughter will have same number of brothers as I have sons. Therefore 2t brothers. And each daughter will have (t 1) sisters.

So according to question

Number of Brothers = 3 × Number of Sisters

$$2t = 3(t - 1) \triangleright 2t = 3t - 3$$

t = 3

Therefore I have 2t = 6 sons

- 26. (B) Clearly, $90 = 3 \times 30$, $180 = 30 \times 6$, $12 = 6 \times 2$, $50 = 2 \times 25$, $100 = 25 \times 4$, $200 = 4 \times 50$
 - So, missing term = $3 \times 50 = 150$

- 27. (D) D is faced outside in option (D) So, option (D) is different.
- 28. (C) My grand mother's only daughter means Anu's 'mother'.

Her mother's only son means Anu's brother.

- .. The man is Anu's brother.
- 29. (B)
- 30. (C) 2 adjacent numbers are 3, 4, 1, 6
 - ∴ 2 opposite number is 5

COMPUTERS

31. (A) EDVAC (Electronic Discrete Variable Automatic Computer) — used vacuum tubes, first generation.

IBM-1401 — second generation (transistors).

CDC-1604 — second generation (transistors).

ICL-2900 — third generation (integrated circuits).

- 32. (A) MS-Access is a DBMS software.
- 33. (C) PowerPoint 4.0 \rightarrow Released in 1994 (valid).

PowerPoint XP \rightarrow Released in 2001 as part of Microsoft Office XP (valid).

PowerPoint 3.5 \rightarrow No such version; versions were 3.0 (1992), then 4.0 (1994).

PowerPoint 2000 \rightarrow Released in 1999 as part of Office 2000 (valid).

The one that is not a valid version is (C) Powerpoint 3.5.

- 34. (A) In order to transfer information from one computer to another, each computer needs an identity which is called "internet protocol address" or IP address.
- 35. (D) The Navigation Pane in MS Access 2007 shows all the tables, queries, forms, and reports in the database.

Database window was used in earlier versions, but not in Access 2007.

Query window and Design view window are specific to designing queries or objects, not the main command centre.

36. (B) Utility programs help maintain, analyze, optimize, or protect the computer system.

Examples: Disk defragmenter, antivirus, backup tools.

Operating system manages hardware and software.

Packages are application software suites.

Compilers convert code from high-level language to machine code.

- 37. (D) Both (ii) and (iii)
 - (ii) Press the Home key \rightarrow jumps to the first slide.
 - (iii) Right click \rightarrow See All Slides \rightarrow click first slide \rightarrow also works.
 - (i) is incorrect because "Go to Slide \rightarrow first slide in the list" is not the correct navigation option.
- 38. (D) In HTML, to create a clickable email link, you use the mailto: protocol inside the <a> tag.

Example:

 Send Email

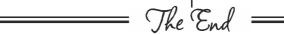
Clicking this link will open the user's default email client to send an email.

Options (A), (B), and (C) are incorrect HTML syntax for email links.

- 39. (B) Twitter is an American micro blogging and social networking service on which users post and interact with messages known as "tweets".
- 40. (C) 32 MB is the minimum requirement of RAM per internet access.
- 41. (C) 1. On the create tab, in the queries group, click Query Wizard.
 - 2. In the New Query dialogue box, click Simple Query Wizard, and then click ok.
- 42. (B) = sum(D₁: D₅) is used to add all numbers in a range of cells where as in option (A, C) the function add only two numbers.
- 43. (B) 'OL' is used in HTML to order a list.
- 44. (C) In C++, the logical AND operation is performed by the && operator.

& → Bitwise AND

 $| | \rightarrow Logical OR$


+ → Addition

45. (B) (PRINT)

website: www.unifiedcouncil.com

ENGLISH

- 46. (C)
- 47. (C)
- 48. (B) 'Zero' the figure, is the synonym of 'Nought'.
- 49. (C)
- 50. (D) 'a, an' is the correct answer. We decide to use an article based on the vowel/ consonant sound the first syllable of a word produces. In 'one-way' the sound produced is that of 'won', which is a consonant sound, hence the article 'a'. In case of 'hour', the sound produced is that of 'our', which is a vowel sound, hence the article 'an'.

website: www.unifiedcouncil.com